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Abstract range of en_neering disciplines, from optimization
and pattern recognition, through signal processing,

A comparative performance and robustness analysis to the field of control.

is provided for feedforward neurofilters trained with In the area of siffnal processing, computer simu-
backpropagation to filter additive white noise. The lations reported in the literature indicate that feed-
signals used in this analysis are simulated pitch rate forward neural networks can be trained to filter sig-
responses to typical pilot command inputs for a mod- nals that have been corrupted by noise [1-3], or to
ern fighter aircraft model. Various configurations of extract input/output mappings from noise-corrupted
non-linear and linear neurofilters are trained to es- data [4]. In these applications however, the evaiua-
timate exact signal values from input sequences of tions of the synthesized neurofilters have been mostly
noisy sampled signal values. In this application, non- limited to the nominal dynamic range of the signals.
linear neurofiltering is found to be more efficient than Moreover, little is known about the relative efficiency
linear neurofiltering in removing the noise from re- of the various neurofiltering techniques so far pro-
sponses of the norninal vehicle model, whereas linear posed in the literature. The objective of this paper
neurofiltering is found to be more robust in the pros- is to provide a certain measure of comparison for the
once of changes in the vehicle dynamics. The possibil- performance and robustness of these known neuro-
ity of enhancing neurofiltering through hybrid archi- filters, where _robustness" is defined as the ability
tectures based on linear and non-linear neuroprocess* to maintain performance in the presence of changes
ing is therefore suggested as a way of taking advan- in the nominal dynamics of the signals due to mod-
rage of the robustness of linear neurofiltering, while elling uncertainties or system degradations. Since the
maintaining the nominal performance advantage of nominal dynamics of the siffnals are only a simplified
non-linear neurofiltering, version of the actual dynamics, an important issue

in the applicability of feedforward nets to serve as
1. Introduction. noise-filter_ is indeed that of robustness.

Neural networks are being used throughout the Towards that goal, the nominal performance and
engineering community to solve a broad range of the robustness of non-linear and linear neurofilters
problems by acquiring knowledge of the application are analyzed in the context of the noise-filtering of
at hand from extensive training data. Their train- signals that are typically encountered in aerospace
ability sets them apart from traditional comput- control systems. The signals used in this analysis are

ing techniques in that they are not so much pro- pitch rate responses to typical pilot command inputs
• grammed as they are trained with data. In addition, for the short take-off and landing flight condition of

their ever growing massive parallelism made possible a longitudinal dynamics model of a modern fighter
through steady advances in analog VLSI is opening aircraft [5-6].

• the way to new engineering perspectives. The bone- The paper is organized as follows. Section 2 briefly
fit of such adaptability, fast processing, and ease-of- introduces the systemic functionality of the neurofil-
implementation has already been shown in a broad ters, and sets the foundations for the training archi-

* "Copyright @1993 by the A.merlcan J.nstitntc of Aeronau- tecture described in Section 3. The nominal perfor-
tics and Astronautics, Inc. Al! rights reserved", mance and robustness of the neurofilters as trained in
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Section 3 for various network configurations are eval- resentation (in terms of system matrices A,_, B,_, and
uated in Section 4. A possible improvement of the Cm) of the ideal response transfer functions listed in
neurofiltering is suggested in Section 5, and some is- Ref.[8]. The maximum intensities IQol and IV01of
sues relating to futurecomparative evaluations with the randomly selected input commands were bounded
conventional filtering techniques, e.g. Kaiman filter- by Q,_=z = 3deg/sec (corresponding to 0.5 inches
ing, are raised, of pilot stick deflection), and V,,_ - 20fe/s. The

pitchrateresponsestosuchrandomlygeneratedpi-

2. Systemic Functionality of the Neu- lot command inputs were sampled every A = 10rn_
rofilters, over T = 14s, and they were corrupted with addi-

The systemic functionality of the neurofllters is il- tive gaussian white noise with a standard deviation
lustrated in Fig.1 in the context of an aerospace con- =t,=_,i,g = 0.3d_g/sec before being passed to the
trol system application. The signals to be filtered training architecture of the neurofilter.
are the simulated pitch-rate responses to both pitch
rate and velocity commands. The closed-loop sys- 3. Training Architecture.
tern includes a nor_-liae_r neurocontroller designed The feedforward neurofilters that are trained and
in ltefs.[5-6] to provide independent control of pitch- evaluated in this simulation are of the symmetric
rate/airspeed for a state-space representation of a type as defined in Refs.[1-2], and of the =s?/mme_-
modern fighter aircraft. The plant model consists r_c type as defined in Ref.[3]. In this application,
of an integrated airframe/propulsion linear model, a the corresponding training architectures are repre-
fuel flow actuator modelled as a linear second order sented in Fig.3a for the symmetric mode, and in
system with position and rate limits, and a thrust Fig.3b for the =s_r_me_r_cmode. For both types
vectoring actuator modelled as a linear first order of architecture, the weights were updated using the
system with position and rate limits. As a result, backpropagation algorithm [9]. In Fig.3a, the nota-
nonlinearities are present in the signal generating pro- tion FS(p, hi, h=,h3, p) represents a feedforward neu-
cess in the form of actuators position and rate lim- rai network with p input units, three hidden layers of
its, and through the nonlinearities of the neurocon- hi, h2, and h3 sigmoidal neurons respectively, and
troller. For the purpose of this study, the noise source iv linear output neurons. In Fig.3b, the notation
has been placed outside of the control loop so that a F'_(iv,h, 1) represents a feedforward neural network
clean baseline signal would be available for compari- with ivinput units, a single layer of h sigmoidai neu-
son. The purpose of the trained neurofilter is to pro- rons, and a single linear output neuron.
videan estimateoftheactualdatavaluesthathave Duringtraining,theinputofa _mmel,ricneuro-

beencorruptedby noisetoenhanceanysubsequentfilterconsistsofa sequenceofnoisysampleddata,
processingbyou_-of-fl_e.loopperipheraimodulessuch and thetargetvaluescoincidewiththeveryinput
asfailure-detectorsandfailure-identifiers,off-line/on-sequenceofnoisysampleddata,asshowninFig.3a.
linesystem-identifiers,damageestimators[7],etc. Inthesymmetricmode,a non-linearneuralnetwork
Inthissimulation,theinformationneededtosyn- Fs(iv,h_,hu,h3,iv)istrainedtoprojectthesequences

thesizethe neurofilteris providedby closed-loopofthep corrd=tedinputdataonasubspaceofsmailer
pitchrateresponsestoinputcommandsgSEL(t)= dimensionh= < iv,and thenbackontotheoriginal
(qS_L(_),vS_L(_)), where qSEL(_) is the pitch rate iv- dimens&_nal space. The mechanism by which
command input, and _SSL(e) is the velocity com- the noise is attenuated is conceptually similar to that
mand input. The pitch rate command input qSEL(_) of linear orthogonai projections [10]. In the presence
is a doublet randomly centered at a time Q be- of non-linear correlations among input data, the com-
tween 2.5s and 5s such that qS_L(t _ Q) = QO, pression and decompression onto andfrom the middle
qS_L(2e¢ >__t > _) -- --Qo, and qS_L(e > 2e¢) "- 0, layer can be enhanced by the processing of the first
as indicated in Fig.2a. The concurrent velocity com- hidden layer and last hidden layer respectively, as in-
mand inputisthestepfunctionVS_L(t_ 0)= 0 dicatedinRef.[2]inthecaseoftime-dependentcorre-
and VS_L(e> O)= Vo,asindicatedinFig.2b.These lations,andinRef.[11]inthecaseofspace-dependent
commandedinputsqSEL(e)and VSEL(_.),whichrep- correlations.As showninFig.3a,thesymmetricneu-
resentthefrequency-contentoftypicalpilotcom- rofilterwas trainedby minimizingthe errorsums
mand inputs,weresubsequentlyfilteredovera pe- I](_=o_)[_- (q+ R)]=(Z- kA) betweensuccessiveill-
riodT = 14stogeneratethecommandedtrajectoriesterestimates_(_)and thenoisyinputdatavalues
_=(_) = (_!=(t),re(t)) as shown in Fig.1. The desired q(t)+h(t), q(t) being the exact pitch rate signal gen-
dynamic filtering (,_=(_))of the pilot command inputs, erated as in Section 2, and _%(_)representing random
£'S_L(e), is achieved through a linear state-space rep- white noise fluctuations. By construction, a neural



network which has been trained in this mode can be sequence of p sampled noisy data, i.e. {q(t___) +
used to estimate the value of the most recent sam- f_(_-i), rnin(k, p) _>i _>0}.

piing, in which case it is operated as a ne=rofi/_er, To evaluate the performance of the various neuro-
, or the value of any of the previous (iv - 1) samples filters, two measures "R" and =r" based on expres-

input to the network, in which case it is operated sion (I)are introduced. The R-measure is a statisti-
as a ne=rosmoo_her. This simulation however will be cal average of Re, Eq.(1), calculated over the whole

• exclnsively concerned with neurofiltering, dynamic range of pilot command inputs as charac-
During training, the input of an _ymmdric neu- terized in Section 2 by (Q0, V0, Q) where Qo, Vo, and

rofilter consists of a sequence of noisy sampled data , _= are uniformly distributed over [-Qm_, +Q_],
and the target value is the exact value of the last [-V,_a=,+V,_=_], and [2.5s, 5s]. The r-measure is the
sampled data, as shown in Fig.3b. In the a_ymmd- value of R=, Eq.(1), for a most demanding case of pi-
ric moa_e, a non-linear neural,network F'4(p, h, 1) is lot command input corresponding to the pitch rate

trained to map sequences of noisy input values onto doublet qsEL(t <_ 5sac) = Q,_=,, qsEz(10sec > _ >
the exact value of the most recent input. (It is noted 5sec) = -Q,_=, qSEL(_ > 10sac) = 0; and the veloc-
that training a neural network to map noisy input ity step vsBz(_ < 0) -- 0 and vs_z(t > 0) -- V,_=z.
data sequences onto the exact value of one of the The R-measure grades the average efficiency of a neu-
previous (p - 1) samples would synthesize a neu- rofilter in removing the noise over an exhaustive set
rosmoother, as defined above). The asymmetric mode of pilot command inputs, whereas the r-measure as-
can also be used to synthesize a linear neurofilter by timates the filtering efficiency for one of the worst
training a network configuration FX(p, O, 1) having cases of pilot command inputs. To test the ability
an input layer of p units, no hidden layer, and an of the neurofilters to operate at noise levels other
output layer with a single linear neuron. For every than that used in training, the R- and r- measures
sampled data, linear neurofiltering reduces the noise were evaluated with gaussian white noise of v_i-
by some averaging of the randomly distributed fiuc- ous standard deviations ran_ing from crmi,_ = 0 to
tuations through a weighted summation over the se- _ -- ldeg/sec. The values of the R- and r- mea-
quence of the previously sampled noisy data. Both sures corresponding to the nominal dynamic range of
types of linear and non-linear asymmetric neurofil- the sigmals are plotted in Figs.4 for the neural network
ters were trained to minimize the error (_ ---q)_(_) configurations FS(25, 13, 3, 13, 25) referred to as sym-
between the filter output _(e) and the exact value metric non-linearneurofilter, FA(50, 30, 1) referred to
q(e) of the pitch rate signal generated as in Section 2. as asymmetric non-linear neurofilter, FA(50, 0, 1) te-
A low-pass filter of the type d_/de = (q(t) - _(t))/r] ferred to as linear neurofilter, and the low-pass filter
was also evaluated in place of the generic neurofilter defined in section 3. The training of the linear and
of Fig.1 after choosing its time-constant r! as mini- non-linear neurofilters, and the optimization of the

mizing the error (_ - q)2(_) between the low-pass es- low-pass filter, were performed with closed-loop re-
timate and the exact value of the pitch rate Sio_nal sponses of the nominal vehicle model corresponding
generated as above. This low-pass filter was not ex- to the set of pilot command inputs defined in Section
pected to have good performance, but was provided 2.

for comparison. It is noted that, among the p neurons of the output
layer of a neural network _rained in symmetric mode,

4. Nominal Performance and Robust- only the first neuron is needed to achieve the neuro-

ness Evaluations. filtering. As a result, the other (p-l) output neurons
The ability of the above filters to remove the noise and their connections from the last hidden layer can

from the pitch rate response to a given pilot corn- be removed from the neurofilter once it has bee_ syn-
manded input "c" is measured by the ratio Rc thesized in the symmetric training mode depicted in

Fig.3a.

Figs.4a & 4b indicate that, in this application,
" R, = 4Z_--/°_ (_( *t ) - q( _t))2 the non-linear neurofilter performs bet-

T/ZX. 2%/Sk=o O) asy etricter than the symmetric non-linear neurofilter, except
• at very low noise levels. With little surprise, the lin-

T being the duration of the pilot command input, ear neurofilter is found to outperform the optimized
and A the sampling time of the vehicle outputs. In low-pass filter at all noise levels. While the average
Eq.(1), q(_) is the exact pitch rate response, h(_) efficiency of the asymmetric non-linear filter is higher
is the white noise fluctuation added to q(t_), and than that of the linear neurofilter, as shown in Fig.4a,
_(g_) is the filter output corresponding to an input the latter filter appears to be more robust in the do-



main of large amplitude signals and high noise levels, and frequency content is therefore expected to en-
as suggested by Fig.4b. In the absence of noise, the hance the non-linear neurofiltering of such signals.
estimates of the neurofilters are very close, yet not In order to analyze this possibility, both symmetric
identical, to the exact values. Due to this small, but and asymmetric non-linearneurofilterswereretrained
non-zero residual error in the absence of noise, the with noise-corrupted closed-loop pitch rate responses
plots of Figs.4 and Figs.5 exhibit the asymptotic be- of the vehicle model for which the matrix dements

haviorthatR -_ oo and r --*oo,as _.o_,e-_ 0. ofthe-4,B, and C matriceswererandomlyvaried
Likewiseforthelow-passfilter,sincethelow-passes- withina marginof±50% oftheirnominalvalues,and
timatesonlyconvergetotheexactsignalvalueswith this,witha differentchoiceoftheA,B,Cs forevery
a time-constant_-!intheabsenceofnoise.Itisalso randomlygeneratedpilotcommand input.As a re-
emphasizedthattheaverageerrorbetweenfilteresti-sult,thedatasetusedforretrainingincludedclosed-
mateandexactvalueincreaseswiththelevelofnoise,looppitchrateresponsescorrespondingtovaluesof
To furtherestimatetherobustnessofthevariousthe-4,B, and C matrices"centered_ aroundthe

filterstrainedasabove,theR- andr-measureswere nominalvalues.4"_"_z, B"°_"_, and C_i"_z,
evaluatedon a testsetextendingbeyondthenomi- respectively.Withinsuchmodelvariations,andfor
haldynamicrangeofthesignals(usedfortraining),theproposedtrainingscheme,thenon-linearneuro-
and generatedasfollows.The matrixelementsof filterswereabletomaintaintheirefficiencyin re-
theA, B, and C matricesofthevehiclemodelwere movingthenoisefromclosed-loopresponsesofthe
randomlyvariedwithina marginof-€-50%oftheirvehiclemodelwiththenominalvaluesofthe.4,B,
nominalvalues,withthesolerequirementthatthe Cs.Furtherattempttoenhancerobustnessbyallow-
stabilityoftheclosed-loopsystembe preserved[5].ing.4,J_,andCs variationsabovethe50% margin
Due totheseverityofthedeviationsofthe.4,/3, ledtoa lossofnominalperformance.As a result,
andC matricesfromtheirnominalvalues,theclosed-therobustnessacquiredwithinthelatter50% mar-
loopsystemresponsestotypicalpilotcommand in- _ providedafairestimateofthemaximum robust-
putspresentedsignificantdeviationsfromthenora-hessthatcanbeinducedintheneurofiltersthrough
inalresponses,asillustratedby thecomparisonbe- traininginthepresenceofmodelvariations.Thesim-
tweentheexactpitchrateresponsestothemostde- ulationresultsindicateda performanceenhancement
mandingpilotcommand inputofthevehicle-modelforbothtypesofnon-linearneurofilters,andshowed
withnominalparametervalues(Fig.6)andwiththe thattheretrainedasymmetricnon-linearneurofilter
off-nominalparametervaluesgeneratedasindicatedperformedbetterthantheotherfilterswhen oper-
above(Fig.7).Althoughtheclosed-loopsystemcan atingwithinthenominaldynamicrangeofthesig-
alsobe variedby modifyinga physicalparameter,rials.ThisisillustratedinthesetofFigs.6a,6b,
saytheweightoftheaircraft,thechoiceofrandomly & 6c,whichcomparetheexactpitchrateresponse
varyingthematrixelementsofthe.4,B, andC ma- (tothemostdemandingpilotcommand inputofthe
triceswas adoptedhereinforitssimplicity,and be- vehiclemodelwithnominalparametervalues)and
causeitprovidedsuf_cientlylargemodelvariationstheestimateofthelinearneurofilter,theasymmetric
(i.e.Fig.6/Fig.7). non-linearneurofilter,andthesymmetricnon-linear
The resultingstatisticalevaluationsofR andr are neurofilterrespectively.Yet,theretrainednon-linear

plottedinFigs.5a& 5b respectively.As indicatedneurofiltersstillcouldnotmatchtherobustnessof
inFigs.5,theasymmetricneurofilterperformsbetterthelinearneurofilterinthedomainofverylargeam-
thanthesymmetricneurofilter,andthelinearneuro-plitudesignals,asillustratedinFig.7by thesecond
filteroutperformstheoptimizedlow-passfilteratalltransient(i.e.betweenapproximately5 and 10sec)
noiselevels.Althoughtheaverageei:ficiencyofthe oftheclosed-looppitchrateresponsetothemost
asymmetricnon-linearneurofilterishigherthanthat demandingcommand inputwitha typicalsetof.4,
ofthelinearneurofilterathighnoiselevels(Fig.5a),R, and Cs leadingtolargevariationsofthevehicle
theformerneurofilterdealspoorlywiththelargeam- model.(ThedashedboxesinFig.7illustratethenoise
plitudeandfrequencycontentofthemostdemanding fluctuationsusedtotrainthenetworksaswellasto
caseofcommand input(Fig.5b).A naturalwaytoen- evaluatethem).Whetherornottheperformanceof
hancetherobustnessofbackpropagation-tralnedneu- thenon-linearneurofiltersastrainedinFigs.3canbe
ralnetworksvis-a-vismodelinguncertaintiesorsys-enhancedthroughmoreefficientsupervisedtraining
temdegradationsistotrainthesenetworkstoachievealgorithmsisanopenissueworthtobe addressedin
theminimizationobjective(s)inthepresenceofsuch futureworks[12].
uncertainties[5].Trainingthenon-linearneurofiltersAs mentionedinSection2 andillustratedinFig.l,
withsequencesofdatahavinga broaderamplitudethewhitenoisesourcewaschosenoutsideofthecon-



trol loop, and the neurofilters trained in Fig.3 were the asymmetric non-linear neurofilter can be trained
used for out-of-the-loop signal processing. Since prac- from representations of the signal generating process
tical implementations of controllers always lead to the in terms of (experimental and/or model-generated)

, presence of noise (and not necessarily gaussian, nor input/output data. The symmetric neuro.filter can
white) within the control loop, enhancing the con- even be trained from noise-corrupted representations
troller performance through neurofiltering ks an issue of the signal generating process in terms of noisy

, that warrant further study. In particular, whether experimental input/output data, without requiring
the neurofilter should be embedded within the neu- any noise spectrum estimation. Of particular inter°

rocontroller itself (i.e. by feeding the neurocontroller est would be therefore further comparative evalua-
with input sequences of noisy sampled data values tions of these various filtering techniques on the basis
or through the use of feedback internal connections of their robustness, their knowledge requirement, and

[13]), or should be placed at the front end of the neu- the information available.

rocontroller (and trained in synergy with the latter P_eferences.
to achieve the control objectives in the presence of
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